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ABSTRACT

An analytical solution is presented for the buckling of the
functionally graded plates are simply supported and subject
to linear temperature rise. Based on the principles of Von
Karman's theory and first order shear deformation theory
, @ set of governing equations for thermal buckling of thick
rectangular plates together with the associated boundary
conditions are derived Navier double series method is then
applied to find the closed-form solutions. Effects of important
parameters such as of ratio of length to width, ratio of length
to thickness, etc., are studied.

KEY-WORDS :Thermal Buckling, Functionally Graded Material,
First Order Shear Deformation Theory.

1. Introduction

The buckling of plates has been studied by many researchers.
Solutions to isotropic plate buckling problems can be found in
themonograph of Timoshenko [1]. Buckling of composite plates
has been investigated extensively in the monograph edited
by Turvey and Marshall [2]. Following the use of laminated
composite plates in engineering applications, bifurcation
buckling of such structures has been investigated by many
researchers without considering flatness before buckling [3].
This point was first clarified for laminated composite plates for
some boundary conditions and for some lamina configurations
by Leissa [3]. Qatu and Leissa [4] applied this result to identify
true buckling behavior of compaosite plates.
Recent studies on new performance materials have led to a
new material known as Functionally Graded Material (FGM).
These are high-performance heat-resistant materials able
to withstand ultrahigh temperatures and extremely large
gradients used in spacecrafts and nuclear plants. FGMs are
microscopically inhomogeneous where the mechanical
properties vary smoothly and continuously from one surface
to the other. These novel materials were first introduced in
1984 [5] and then developed by other scientists [6,7]. Typically,
these materials are made from a mixture of ceramics and
metal. It is apparent from the literature survey that most of
the researches on FGMs have been restricted to thermal stress
analysis, fracture mechanics, and optimization. Very little work
has been done to consider the stability analysis, buckling, and
vibrational behavior of FGM structures. Some research works
related to the present study are introduced in the following.
Birman [8] studied the buckling problem of functionally
graded composite rectangular plates subjected to uniaxial
compression. Two classes of fibers are used in hybrid composite
material. Linear equations of equilibrium for a symmetrically
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laminated plate which are uncoupled, have been derived and
then solved to obtain the critical buckling load for simply
supported edges condition.

Bouazza et al [9] studied buckling of functionally graded plates
subjected to uniform temperature rise. The material properties
of the FGM plates are assumed to change continuously
throughout the thickness of the plate, according to the volume
fraction of the constituent materials based on the sigmoid FGM
(S-FGM). The results show that critical temperature differences
for the sigmoid functionally graded plates are generally lower
than the corresponding values for homogeneous plates.
Bouazza et al [10] studied thermal buckling of functionally
graded plates based on the using first order shear deformation
theory. Material properties are varied continuously in the
thickness direction according to a sigmoid distribution.
The thermal buckling behaviours under uniform, linear and
sinusoidal temperature rise across the thickness. The results
show that critical temperature under sinusoidal temperature
rise has the highest value in three cases, and that under linear
temperaturerise is higher than that under uniform temperature
rise. Thermal buckling of functionally graded plates based on
higher order theory was investigated by Javaheri and Eslami
[11]. The study concludes that higher order shear deformation
theory accurately predicts the behavior of functionally graded
plates, whereas the classical plate theory overestimates
buckling temperatures.

In this study, thermal buckling analyses of functionally graded
materials subjectedtolineaire temperaturerise areexamined by
using first order shear deformation theory. Material properties
are varied continuously in the thickness direction according to
a power-law distribution. Numerical results are compared with
results of the classic plate theory. Furthermore, the thermal
buckling behaviors due to temperature field, volume fraction
distributions, and system geometric parameters are studied, in
detail.

2.Theoretical Formulation

The functionally graded material (FGM) can be produced by
continuously varying the constituents of multi-phase materials
in a predetermined profile. The most distinct features of an
FGM are the non-uniform microstructures with continuously
graded properties. A FGM can be defined by the variation
in the volume fractions. Most researchers use the power-
law function, exponential function, or sigmoid function to
describe the volume fractions. In order to avoid the stress
concentrations appear in one of the interfaces ;the power-law
function is used in this study.

2.1.The material properties of P-FGM plates
in order to analyze P-FGM structures as shown in Fig. 1, the
P-FGM function (Bao and Wang [12]) can be employed in

this study. The volume fraction using power-law functions to
ensure smooth distribution of stresses is defined.

V,(2)=(z/h+1/2) )
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where is the thickness of the plate and is the material para-
meter that dictates the material variation profile through the
thickness.
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Fig. 1.Typical FGM square plate.

By using the rule of mixture, the material properties of the
P-FGM can be calculated by '

E()=V,()E +[1-7, ()| @

where E(2)denotesa generic material property such as mo-
dulus, £ and Ex indicate the property of the top and bottom
faces of the structure, respectively

Fig.2 shows that the variation of volume fraction in Egs. (1)
represents power-law distributions, and this FGM structure is
thus called a P-FGM structure. Consider an elastic rectangular
plate. The local coordinates and define the mid-plane of the
plate, whereas the -axis originated at the middle surface of
the plate is in the thickness direction. The material properties,
Young's modulus, on the upper and lower surfaces are different
but are pre-assigned according to the performance demands.
However the Youngs modulus of the plates and vary conti -
nuously only in the thickness direction (z -axis) i.e ., £ = E(2)
. It is called functionally graded material (FGM) plates. There
have been numerous works on studying the response of FG
plates made of isotropic elastic constituents with the homoge-
nized material also modeled as isotropic elastic, the only other
study on FG anisotropic plate (Pan [13]) has assumed that all
elastic constants vary exponentially through the plate thic-
kness at the same rate. It is highly unlikely that elastic modulus

of a FG anisotropic plate will exhibit this property.

Fig. 2. The variation of volume fraction of P-FGM plate.
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2.2 Stability equations

Assume that %,V, W denote the displacements of the neutral
plane of the plate in *.VsZ directions respectively; ¢r’¢,\'
denote the rotations of the normals to the plate midplane.
According to the first order shear deformation theory, the
strains of the plate can be expressed

g, =u,+zb,, &, =0, +z¢m},“V

Vig =00, b2, +0.) 3)
Yx:c =¢'x +w,x YZ}' :¢Y+W|Y

The forces and moments per unitlength of the plate expressed
in terms of the stress components through the thickness are

ni2 hiz
N; = jcﬁ.dz ‘M= Icuzdz

~hi2 ~h/2

;o Q= T’cu dz (4)

-hi2

The nonlinear equations of equilibrium according to Von
Karman’s theory are given by:

Ny # N, =0)
Ng + Nyp =1
M,,+M, . -Q, =0
M +M, . ~Q, =0
Q.. +Q,, +q+N.w  +Nw_+2N w_ =0

(5)

Using Eqs.(2), (3) and (4), and assuming that the temperature
variation is linear , the equilibrium Eq. (5) may be reduced of
one equations as

V4w+2(;+V)V2(NXWM+Nywl),),+2Nx},w’“+q) (6)
“1 < ]

E (1 _Vz)
== AN W +N W 42N W+ ) =0

E1E3_E§( Tt ¥ ¥ Xy LRy q)
where

B2
BBy Bs) = _"(l,z,zz)Edz (7)

-ff2

hi2
(@,0)= [(1,2) E@a()T(x,y,2)dz )

_h.’.’z
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To establish the stability equations, the critical
equilibrium method is used. Assuming that the state
of stable equilibrium of a general plate under thermal
load may be designated by . The displacement of the
neighboring state is , where is an arbitrarily small
increment of displacement. Substituting into Eq. (6)
and subtracting the original equation, results in the
following stability equation

2(1+v)

Viw +

VA(NJw, . + Ngwm +2NG W, )
! (9)

E,(1-v*
—LV_)'(NEWLM_!_NSWI, +2Ngyw|-1¥)=0

E,E, - E2

1
yy

where, NS, Ngand N?Q,refer to the pre-buckling force
resultants

To determine the buckling temperature difference ,
the pre-buckling thermal forces should be found firstly.
Solving the membrane form of equilibrium equations,
gives the pre-buckling force resultants:

N =——n-, N“:—li, Nj, =0 (10)
-V

Substituting Eq(10) into Eq. (9), one obtains

ol 2(1+v) @
E

E,(1-v?) @

Viw =
E.E,-E; 1-v

Viw, +

1 Viw,=0 (11)
i 1-v

The simply supported boundary condition is defined as

w, =0,M,,=0,¢,, =0 onx=0,a

(12)
w, =0,M,=0,¢,, =0 on y=0,b

The following approximate solution is seen to satisfy
both the governing equation and the boundary
conditions

w, =csin(mnx/a)sin(nny/b) (13)

where m, n are number of half waves in the x and y
directions, respectively, and c is a constant coefficient.
Substituting Eq. (13) into Eq. (11), and substituting for
the thermal parameter from Eq. (8), yields

(BB, — E;)1-v)x*(m® +n*B2)E,

" : (14)
2(1+V)EE, — E} )z’ (m* +n*B2) + Ela* (1-v?)
where
B =alb (15)
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2.3. Buckling Analysis

In this section, the thermal buckling behaviors of fully
simply supported rectangular metal-ceramic plates
under thermal environment are analyzed. The thermal
load is assumed to be linear temperature rise through
the thickness direction. The reference temperature is
assumed to be 5°C. The effects of volume fraction index
and geometric parameter a/h are investigated in each
case. Typical values for alumina and aluminum are listed
in Table 1 [9-11].

Table1 : Material prbperties [9-11].

Property
Material E (GPa) v a(l/°C) k(W /[ mk)
Aluminum 70 0.3 23e-6 204
Alumina 380 0.3 T.4e-6 10.4

2.3.1 Linear temperature rise

The temperature field under linear temperature rise
through the thickness is assumed as

T(z)=%(z+kf2)+Tm (16)

where z is the coordinate variable in the thickness
direction which measured from the middle plane of
the plate.

T, is the metal temperature and AT is the
temperature difference between ceramic surface and
metal surface, i.e.,, . AT =T, -7  For this loading®
case, the thermal parameter can be expressed as

®=PT, +XAT (17)
where
hi/2
X = jE(_z)a(z)(z +h/2)dz (18)

—h/2

From Eq.(17) one has

AT = ﬂ"_‘. (19)
X
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The critical temperature difference is obtained for the
values of that make the preceding expression a mi-
nimum. Apparently, when minimization methods are
used, critical temperature difference is obtained for
m=n=1.

Table2.Critical temperature for isotropic square plates
subjected to different forms of temperature
distribution :

(a/h=100,a =2-10°,v =0.3)

Temperature distribution
Linear temperature rise

Amnalytical [15]
126.54

FEM [14]
126

Present
1264739

3. Numerical Results and Discussion

First, Based on the derived formulation, a computer
program is developed to study the behavior of FGM
plates in thermal buckling to validation checks against
the results available in the literature. The critical tem-
peratures of simply supported, isotropic square plates
subjected to linearly varying temperature distributions
obtained using first order shear deformation theory
are verified against the energy method based results
of Gowda and Pandalai [15] and solution of Kri et al
[14]based on finite element method using semiloof
element, in Table 2. Both results are in excellent agree-
ment.
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Fig. 3. Critical temperature gradient with respect to
aspect ratio Ba and a/h under linear temperature rise

By solving Eq. (18), the critical temperature gradient
can be obtained. Fig. 3 gives the variation of the critical
temperature gradient of fully simply supported rec-
tangular Aluminum-Alumina FGM plates under linear
temperature rise. The responses are very similar compa-
ring to those under uniform temperature rise (Bouazza
et al [9,10]); however, the critical temperature gradient
under linear temperature rise is higher than that under
uniform temperature rise.

In this figure, the as aspect ratio a/b is increased, the
critical temperature change increases. However, the cri-
tical temperature change decreases rapidly, when the
geometric parameter a/h is decreased. In addition, the
plates are thicker; the critical temperature change be-
comes higher.

26

35000

300004

Critical temperature (°C)

Fig.4. Comparison between temperature graphs vs. ra-
tio h/a based on first order shear deformation theory,
classic plate theory under linear temperature rise.
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Fig.5. Comparison between temperature graphs vs. ra-
tio h/a based on first order shear deformation theory,
classic plate theory under linear temperature rise.

The critical temperature differences are calculated for
functionally graded plates under linear temperature
rise, and are plotted in Figs. 4-5. Figs. 4-5 shows the cri-
tical buckling temperature difference vs the thickness
to span ratio h/a for different values of volume fraction
exponent k( a/b=1). It is seen that the critical tempera-
ture difference increases monotonically as the relative
thickness h/a increases. The values of the critical tem-
perature differences calculated by using the first order
shear deformation theory are lower than those calcu-
lated by using the classical plate theory, especially for
thick plates.
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CONCLUSIONS

The critical buckling temperatures of FGM plate have
been obtained using a first order shear deformation
theory. The results of the sample problem show good
agreement with the literature values as seen from the
validation checks. Based on the results reported here
for various parameters of FGM plates, the following
conclusions may be drawn.

(1) The critical buckling temperature differences for
functionally graded plates are generally lower than the
corresponding values for homogeneous plates. It is very
important to check the strength of the functionally
graded plate due to thermal buckling, although it has
many advantages as a heat resistant material.

(2) The critical buckling temperature difference for a
functionally graded plate is increased when the plate
aspect ratio or the thickness to span ratio increases.
However, it is decreased when the power law index k
increases.

(3) Transverse shear deformation has considerable ef-
fect on the critical buckling temperature difference of
functionally graded plate, especially for a thick plate or
a plate with large aspect ratio.

(4) The critical temperature gradient under linear
temperature rise is higher than that under uniform
temperature rise.
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